Tags : FPGA8051chipMikrokontrolerAlteraPLCPemrogramanVHDLMikroprosesorrobotMCS-51TeknologiProgrammable
Home » Jurnal » Pengolahan Citra dan Deteksi Wajah pada Sistem Pengenalan Wajah

Pengolahan Citra dan Deteksi Wajah pada Sistem Pengenalan Wajah

Oleh , 15 Juli 2009.

Signal Image and Video Processing2 Pengolahan Citra dan Deteksi Wajah pada Sistem Pengenalan WajahBayangkan jika teknologi pengenalan wajah misal untuk verifikasi password atau sandi seperti di film-film dapat diterapkan di kehidupan kita sehari-hari? Asik bangetttt..! Apa sih pengenalan wajah itu?

Pengenalan wajah atau Face Recognition merupakan sebuah sistem identifikasi pribadi yang menggunakan karakteristik pribadi seseorang (dalam hal ini wajah orang tersebut) untuk mengidentifikasikan identitas orang tersebut. Sistem yang dikembangkan dalam penelitian ini adalah sebuah sistem pengenalan wajah yang menggunakan ekstraksi fitur berbasis FLD (Fisher Linear Discriminant). Proses perancangan sistem ini terbagi menjadi 2 (dua) tahap: tahap pengolahan citra dan deteksi wajah serta tahap pengenalan wajah.
gb1 Pengolahan Citra dan Deteksi Wajah pada Sistem Pengenalan Wajah
Gambar : Blok Diagram Sistem

Citra masukan berupa sebuah citra digital yang kemudian diolah dengan cara melakukan normalisasi cahaya dan ukuran agar kinerja pengklasifikasi (classifier) dapat ditingkatkan. Setelah citra tersebut dinormalisasi, sistem kemudian diharapakan mampu mendeteksi bagian citra tersebut yang merupakan wajah. Pengklasifikasi yang digunakan pada tugas akhir ini untuk mengklasifikasi wajah atau bukan wajah adalah SVM (Support Vector Machine).
Dengan menggabungkan metode seleksi fitur berbasis FLD dengan SVM sebagai pengklasifikasi. FLD (Fisher Linear Discriminant) merupakan kombinasi dari PCA (Principle Component Analysis) dan LDA (Linear Discriminant Analysis). Metode ini memaksimalkan jarak pemisah pola antar kelas dan juga memaksimalkan penyebaran pola di dalam kelas. Dengan menggunakan FLD, maka jumlah fitur yang dapat digunakan untuk membedakan jenis citra menjadi lebih sedikit bila dibandingkan pengambilan fitur yang hanya menggunakan PCA.

Citra mula-mula diubah ke dalam bentuk vector, dalam hal ini matrix citra yang tadinya berukuran 112 x 92 diubah menjadi matrix vector dengan ukuran 1030×1. Setelah semua citra diubah menjadi vector, kemudian dilakukan ekstraksi fitur.
Dengan menggabungkan metode seleksi fitur berbasis FLD dengan SVM sebagai pengklasifikasi. FLD (Fisher Linear Discriminant) merupakan kombinasi dari PCA (Principle Component Analysis) dan LDA (Linear Discriminant Analysis). Metode ini memaksimalkan jarak pemisah pola antar kelas dan juga memaksimalkan penyebaran pola di dalam kelas. Dengan menggunakan FLD, maka jumlah fitur yang dapat digunakan untuk membedakan jenis citra menjadi lebih sedikit bila dibandingkan pengambilan fitur yang hanya menggunakan PCA.

Citra mula-mula diubah ke dalam bentuk vector, dalam hal ini matrix citra yang tadinya berukuran 112 x 92 diubah menjadi matrix vector dengan ukuran 1030×1. Setelah semua citra diubah menjadi vector, kemudian dilakukan ekstraksi fitur.
gb2 Pengolahan Citra dan Deteksi Wajah pada Sistem Pengenalan Wajah
Gambar : Visualisasi pengubahan citra ke bentuk vektor

Tahapan dalam ekstraksi fitur yang digunakan pada sistem adalah sebagai berikut :
? Ekstraksi fitur PCA
? Ekstraksi fitur FLD

Deteksi Wajah
Citra kulit akan diklarifikasi ke dalam dua golongan, yaitu wajah dan bukan wajah. Sebelumnya, dilakukan pengolahan pada normalisasi cahaya, cross correlation, normalisasi dimensi dan penghitungan bobot. Setelah bobot citra didapat classifier yang telah dilatih sebelumnya, dalam hal ini SVM siap mengelompokkan citra tersebut ke dalam golongan wajah atau bukan wajah.
gb3 Pengolahan Citra dan Deteksi Wajah pada Sistem Pengenalan Wajah
Gambar : a. citra masukan ; b. citra hasil deteksi kulit

Dari pengujian yang dilakukan, tingkat keberhasilan sistem keseluruhan sebagai sistem pengenalan wajah adalah 83% (83 citra berhasil dideteksi dan dikenenali dari 100 citra uji). Tingkat keberhasilan ini cukup tinggi mengingat sistem ini mampu mengenali individu dari basis data dengan variasi ekspresi atau pose.

Author : Robin

Jurnal ndoWare adalah artikel-artikel yang disadur dari Makalah, Skripsi, Tugas Akhir, Thesis, Disertasi, Karya Ilmiah dalam bidang Teknologi, Elektronika dan Komputer

Publikasikan Jurnal anda di ndoWare.com

· kirim komentar
  • shiro

    bos, mentah bgt inpoh na…
    gw jg lg bkin proyek recog, tp yg speech, pke fpga xilinx,klo ada yg bs d share bagi2 dnk??? lewat FB dlu jg boleh k shiro nugros, thanx 4 ur att

Komentar

Tambahkan komentar anda di bawah, atau trackback dari situs anda. Berlangganan komentar ini melalui RSS.

Silahkan berdiskusi yang padat dan berisi. Tetap pada topik. Dilarang spam.